
International Journal of Scientific & Engineering Research, Volume 8, Issue 1, January-2017                                                            137 
ISSN 2229-5518 

IJSER © 2017 
http://www.ijser.org 

Mathematical to Predict the Compressive 
Strength of Sugar Cane Bagasse Ash 

Cement Concrete 
1 Okoroafor, S.U., 2Anyanwu, S.E. 3Anyaogu, L 

1,3Department of Civil Engineering, Federal University of Technology, Owerri, Imo State, Nigeria 

2Department of Civil Engineering, Federal Polytechnic Neked, Owerri, Imo State, Nigeria 

Abstract  

This research work focused on the development of mathematical model for the effective replacement 
of Portland cement by sugar cane bagasse in mortar and concrete. The model techniques used here is 
Scheffe’s Simplex Design. A total of ninety (90) cubes were cast, consisting of three cubes per mix 
ratio and for a total of thirty (30) mix ratios. The first fifteen (15) mixes were used to develop the 
models, while the other fifteen were used to validate the model. The mathematical model results 
compared favourably with the experimental data and the predictions from the model were tested with 
statistical student’s T- test and found to be adequate at 95% confidence level. The optimum 
compressive strength of the blended concrete at twenty-eight (28) days was found to be 29.48Nmm2. 
This strength corresponded to a mix ratio of 0.55:0.9:0.10:2.8:3.2 for water: cement: sugar cane 
bagasse: sand: granite respectively. The model derived in this research can be used to predict mix 
ratios for any desired strength of Sugar Cane Bagasse ash-cement concrete and vice versa. 
 
KEYWORDS: Sugar Cane Bagasse Ash, cement, compressive strength, mix ratio, Scheffe’s simplex 
model, Experimental Data.  
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1.0 INTRODUCTION 
The basic components of concrete are water, 
cement, coarse aggregate, and fine aggregate 
(Neville, 2011). Various chemical and mineral 
admixtures as well as supplementary 
cementitious materials (in this case sugar cane 
baggase ash) can be added. The proportions of 
these components affect properties of concrete. 
Such properties are shear modulus, elastic 
modulus, compressive strength, setting time, 
durability, workability, creep, shrinkage. 
Application of optimization principles in 
concrete produces an optimum concrete mix. 
Optimum mix being a mix with the required 
properties (which can be any of the above 
mentioned properties) and performance at a 
minimum price (Osadebe and Ibearugbulem 
2009).   

Cement is the major component of concrete used 
by construction industries in Nigeria. It is used 

in the production of concrete, mortar and 
sandcrete blocks which are required for the 
construction of buildings, dams and bridges 
(Anya, 2015). Most popularly used type of 
cement in Nigeria is Ordinary Portland Cement 
whose price is on the increase due to inflation, 
and major changes in the cement sector of 
Nigeria discourage Nigerians from embarking 
on building housing unit or large multi-storey 
structure.  

 Effort at producing low cost rural housing has 
been minimal. Development of supplementary 
cementitious material is a major step in reducing 
cost of producing concrete, mortar and sandcrete 
blocks in building construction. Also, a lot of 
effort has been put into the use of industrial and 
agro waste in more effective ways. The use of 
sugar cane baggase ash (SCBA), a waste from 
sugar cane industry reduces cost of production 
of concrete. These will provide a cheap, safe and 
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effective management of sugar cane baggaseash 
(SCBA) as waste (Okoroafor, 2012). 

However, addition of sugar cane baggase ash 
(SCBA) as stated before increases the 
component of concrete from four to five. This 
makes the orthodox method of mix design, 
which is used in predicting the properties of 
concrete such as compressive strength more 
tedious. The problem of identifying optimum 
concrete mix becomes very complicated and 
extremely complex. This is in agreement with 
the statement credited to Ippei et al (2000), 
which stated thus: “this proportion problem is 
classified as a multi criteria optimization 
problem and it is of vital importance to 
formulate a way to solve the multi criteria 
optimization problem. Using the orthodox 
method of developing mix designs will require 
carrying out several trials on various mix 
proportion in the laboratories making even more 
difficult to identify optimum concrete mix”. 
With the development of a mathematical model 
that will predict optimum concrete mix values of 
Compressive Strength of concrete and other 
desired properties of concrete, it becomes easier 
to identify an optimum concrete mix (Ezeh and 
Ibearugbulem (2009, 2010). Development of a 
mathematical model will reduce the requirement 
of large number of trials and makes the 
accommodation of extra components of concrete 
apart from the basic four components easier. 

Mixture models have been applied in many real 
life applications to solve problems in such areas 
as in pharmacy, food industry, agriculture and 
engineering. Piepel and Redgate (1998) applied 
mixture experiment analysis to determining 
oxide compositions in cement clinker. Ezeh et al 
(2010) developed a model for the optimization 
of aggregate composition of laterite/sand hollow 
block using Scheffe’s simplex method. Mama 
and Osadebe  (2011) developed models, one 
based on Scheffe’s simplex lattice and the other 
on Osadebe’s model, for predicting the 
compressive strength of sandcrete blocks using 
alluvial deposit. Osadebe’s model was also used 
by Anyaogu et al (2013) to predict the 
compressive strength of Pulverized Fuel Ash 
(PFA) – Cement concrete. 

Some other works on mixture experiments 
include: 

• Simon (2003) who developed 
models for concrete mixture 
optimization. Models were 
developed for many responses 
such as compressive strength, 1-
day strength, slump and 42-day 
charge passed for concrete made 
using water, cement, silica fume, 
high range water-reducing 
admixture, coarse aggregate and 
fine aggregate. 

• Obam (2009) – a model for 
optimizing shear modulus of Rice 
husk ash concrete. 

• Onwuka et al (2011) – model for 
prediction of concrete mix ratios 
using modified regression theory.  

• Osadebe and Ibearugbulem (2009) 
– Simplex lattice model for 
optimizing compressive strength of 
periwinkle shell-granite concrete 

• Ezeh and Ibearugbulem (2009, 
2010) – models for optimizing 
compressive strength of recycled 
concrete and river stone aggregate 
concrete respectively 

• Akalin et al (2008). – Optimized 
chemical admixture for concrete 
on mortar performance tests. 

2.0 MATERIALS AND METHODS
 2.1 Materials  
 2.1.1 Aggregates 
 The aggregates used in this 
research work were fine aggregate and 
Coarse aggregates.  The fine aggregate was 
obtained from a flowing river (Otamiri 
River) purchased from mining site inside 
Federal University Owerri, Imo State. It 
was sun-dried for seven days inside the   
laboratory before usage. The aggregates 
used were free from deleterious matters.  
The maximum diameter of sand used was 
5mm. The physical and mechanical 
characterization tests were performed on 
the sand; the values of 1564kg/m3, 2.65, 
1.53, 2.0 for average bulk density, specific 
gravity, coefficient of curvature (Cc) and 
uniformity (Cu) were obtained 
respectively. The coarse aggregate was 
obtained from dealers in Owerri in Imo 
State; the maximum size of the coarse 
aggregate was 19.5mm and the compacted 
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bulk density of the coarse aggregate is 
1615kg/m3 and the non-compacted bulk 
density is 1400kg/m3 

2.1.2 Water   
Water used for this research work was 
obtained from a borehole within the 
premises of Federal University of 
Technology, Owerri, Imo State. The water is 
potable and conforming to the standard of 
BS EN 1008: (2002).  Since it meets the 
standard for drinking, it is also good for 
making concrete and curing concrete. 
2.1.3 Cement   
Cement can be defined as a product of 
calcareous (lime) and argillaceous (clay) 
materials which when mixed with water 
forms a paste and binds the inert materials 
like sand, gravel and crushed stones 
(Bhavikatti, 2001). According to BS 5328: 
Part 1:1997 “cement is a hydraulic binder 
that sets and hardens by chemical interaction 
with water and is capable of doing so under 
water”.  

Dangote brand of ordinary Portland cement 
which conforms to the requirements of BS 
EN 197 1:2000 was obtained from dealer in 
Owerri and use for all the work. 
2.2 METHODS 

2.1 Scheffe’s Optimization Model 

In this work, Henry Scheffe’s optimization was 
used to predict possible mix proportions of 
concrete components that will produce a desired 
strength by the aid of a computer programme. 
Achieving a desired compressive strength of 
concrete is dependent to a large extent, on the 
adequate proportioning of the components of the 
concrete. In Scheffe’s work, the desired property 
of the various mix ratios, depended on the 
proportion of the components present but not on 
the quality of mixture. 

Therefore, if a mixture has a total of q 
components/ ingredients of the 𝑖𝑖𝑡𝑡ℎ  component of 
the mixture such that 

𝑋𝑋𝑖𝑖 ≥ 0 (𝑖𝑖 = 1, 2, 3, . . , 𝑞𝑞)        (3.1) 

and assuming the mixture to be a unit quantity, 
then the sum of all proportions of the component 
must be unity. That is, 

𝑋𝑋1 + 𝑋𝑋2 + 𝑋𝑋3 + ⋯+ 𝑋𝑋𝑞𝑞−1 + 𝑋𝑋𝑞𝑞 = 1       (3.2) 

This implies that 

�𝑋𝑋𝑖𝑖 = 1                              (3.3)
𝑞𝑞

𝑖𝑖=1

 

Combining Eqn (3.1) and (3.3) 

It implies that  0 =≤ 𝑋𝑋𝑖𝑖 ≤ 1(3.4) 

The factor space therefore is a regular (q –1) 
dimensional simplex. 

3.6.1.1 Scheffe’s Simplex Lattice 

A factor space is a one-dimensional (a line), a 
two-dimensional (a plane), a three – dimensional 
(a tetrahedron) or any other imaginary space 
where mixture component interacts. The 
boundary with which the mixture components 
interact is defined by the space. 

Scheffe (1958) stated that (q–1) space would be 
used to define the boundary where q components 

are interacting in a mixture. In other words, a 
mixture comprising of q components can be 
analyzed using a (q –1) space  

For instance: 

For a mixture comprising two components i.e. q 
= 2, a line will be used to analyze the interaction 
components. Thus, it is a one-dimensional space. 

 

 
Fig 3.1: Two components in a one-
dimensional space 

a. A mixture comprising three 
components, i.e. q = 3, triangular 
simplex lattice is used in its analysis. 
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Fig 3.2: Three components in a two – 
dimensional space 

b. A mixture comprising for components, 
i.e.𝑞𝑞 = 4, a tetrahedron simplex lattice 
is used in its analysis. 

 

 

Fig 3.3: Four components in a three – 
dimensional space 

3.6.1.2 Interaction of Components in 
Scheffe’s Factor Space 

The components of a mixture are always 
interacting with each other within the factor 
space. Three regions exist in the factor space. 
These regions are the vertices, borderlines, 
inside body space. Pure components of the 
mixture exist of the vertices of the factor spaces. 
The border line can be a line for one-
dimensional or two – dimensional factor space. 
It can also be both lines and plane for a three – 
dimensional, four – dimensional, etc. factor 
spaces. Two components of a mixture exist at 
any point on the plane border, which depends on 
how many vertices that defined the plane border. 
All the component of a mixture exists right 
inside the body of the space. 

Also, at any point in the factor space, the total 
quantity of the Pseudo components must be 
equal to one. A two – dimensional factor space 
will be used to clarify the interaction 
components. Fig 3.4: Shows a seven points on 
the two – dimensional factor space. 

 

 

 

 

 

 

Fig3.4: A Two – Dimensional Space Factor 

The three points, A1, A2 and A3 are on the 
vertices. Three points A12, A13 and A23 are on 
the border of space. One remaining of A123 is 
right inside the body of the space. 

A1, A2 and A3 are called principal co-ordinates, 
only one pure component exists at any of these 
principal coordinates, the total quantity of the 
Pseudo components of these coordinates is equal 
to one. The other components outside these 
coordinates are all zero. For instance, at 
coordinate A1, only A1 exists and the quantity 
of its Pseudo component is equal to one. The 
other components are equal to zero. 

A12, A13 and A23 are point or coordinates where 
binary mixtures occur. 

At these points only two components exist and 
the rest do not. For instance, at point A12, 
components of A1 and A2 exit. The total 
quantity of Pseudo components of A1 and A2 at 
that point is equal to one, while component A3 is 
equal to zero at that point. 

If A12 is midway, then the component of A1 is 
equal to half and that of A2 is equal to half, 
while A3 is equal to zero at that point. At any 
point inside the space, all the three components 
A1, A2 and A3 exist. The total quantity of the 
Pseudo component is still equal to one. 
Consequently, if a point A123 is exactly at the 
centroid of the space, the Pseudo component of 
A1 is equal to those of A2, and A2 and is equal 
to one – third (1 3� ) 

3.6.1.3 Five Components Factor Space 

This research work is dealing with a five 
component concrete mixture. The components A

 

AA A
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that form the concrete mixture are water/cement 
(w/c) ratio, cement, sugar cane baggasse ash, , 
river sand and granite. 

The number of components, q is equal to five. 
The space to be used in the analysis will be q–1, 
which is equal to four – dimensional factor 
space. A four-dimensional factor space is an 
imaginary dimension space.  

The imaginary space used is shown in figure 3.5 

below 

  

Fig.3.5 shows 15 points on the five – 
dimensional factor space. The properties of the 
Pseudo components of the five component 
mixture is shown in Table 3.1. 

 

Table 3.1: Proportions of the Pseudo components 

Points on Factor Space Pseudo Components 
A1 (1, 0, 0,    0, 0,   ) 
A2 (0, 1, 0,    0, 0,   ) 
A3 (0, 0, 1,    0, 0,   ) 
A4 (0, 0, 0,    1, 0,   ) 
A5 (0, 0, 0,    0, 1,   ) 
A12 (0.5, 0.5, 0,    0, 0,   ) 
A13 (0.5, 0, 0.5,    0, 0,   ) 
A14 (0.5, 0, 0,    0.5, 0,   ) 
A15 (0.5, 0, 0,    0, 0.5,   ) 
A23 (0, 0.5, 0.5,    0, 0,   ) 
A24 (0, 0.5, 0,    0.5, 0,   ) 
A25 (0, 0.5, 0,    0, 0.5,   ) 
A34 (0, 0, 0.5,    0, 0.5,   ) 
A45 (0, 0, 0,    0.5, 0.5,   ) 
 
3.6.1.4 Relationship between the Pseudo and 
Actual Components 

In Scheffe’s mixture design, the Pseudo 
components have relationship with the actual 

component. This means that the actual 
component can be derived from the Pseudo 
components and vice versa. According to 
Scheffe, Pseudo components were designated as 
X and the actual components were designated as 
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S. Hence the relationship between X and S as 
expressed by Scheffe is given in Eqn (3.5). 

𝑆𝑆 = 𝐴𝐴 ∗ 𝑋𝑋                                        (3.5) 

where A is the coefficient of the relationship 
Eqn (3.5 ) can thus be transformed to Eqn (3.6) 
as 

𝑋𝑋 = 𝐴𝐴−1 ∗ 𝑆𝑆                    (3.6) 

Let A-1 = B, hence, Eqn (3.6) becomes 

𝑋𝑋 = 𝐵𝐵 ∗ 𝑆𝑆                                             (3.7) 

Eqn (3.5) will be used to determine actual 
component of the mixture when the Pseudo 
components are known, while Eqns (3.6) and 
(3.7) will be used to determine the Pseudo 
components of the mixture when the actual 
components are known. 

The six components are: Water, Cement, 
Sawdust ash, Palm bunch ash, Sand and Granite. 

Let S1 = Water; S2 = Cement; S3 = SCBA; S4 = 
Sand and S5 = Granite. 

Then, in keeping with the principle of absolute 
volume 

𝑆𝑆1 + 𝑆𝑆2 +  𝑆𝑆3 + 𝑆𝑆4 + 𝑆𝑆5+= 𝑆𝑆           (3.8) 

Or 

𝑆𝑆1

𝑆𝑆
+
𝑆𝑆2

𝑆𝑆
+  
𝑆𝑆3

𝑆𝑆
+
𝑆𝑆4

𝑆𝑆
+
𝑆𝑆5

𝑆𝑆
= 1               (3.9) 

where 𝑆𝑆𝑖𝑖
𝑆𝑆

 is the proportion of the 𝑖𝑖𝑡𝑡ℎ constituent 
component of the considered concrete mix. 

𝐿𝐿𝐿𝐿𝑡𝑡
𝑆𝑆𝑖𝑖
𝑆𝑆

= 𝑍𝑍𝑖𝑖 ,𝑤𝑤ℎ𝐿𝐿𝑒𝑒𝐿𝐿 𝑖𝑖 = 1, 2, 3, 4, 5   (3.10) 

Substituting Eqn (3.10) into Eqn (3.9), we have 

𝑍𝑍1 + 𝑍𝑍2 +  𝑍𝑍 + 𝑍𝑍4 + 𝑍𝑍5 = 1   (3.11) 

According to Henry Scheffe’s simplex lattice, 
the mix ratio drawn in a imaginary space will 
give a 21 points on the five – dimensional factor 
spaces. 

Let Pseudo component of the mixture at a given 
point Ajk on the factor space be Kijk. The point 
Ajk is an arbitrary point on the factor space and 
Kijk is the arbitrary quantities of all the Pseudo 
components. 

The proportion of the Pseudo component of the 
six component mixture is given in Table 3.1. 
The starting set of actual components S and 
Pseudo Components X used in this research is 
shown in Table 3.2. 

Table 3.2: Actual and Pseudo components 

N S1 S2 S3 S4 S5 Response X1 X2 X3 X4 X5 
1 0.6 0.95 0.05 2 4 Y1 1 0 0 0 0 
2 0.55 0.90 0.10 2.8 3.2 Y2 0 1 0 0 0 
3 0.56 0.85 0.15 2.6 3.4 Y3 0 0 1 0 0 
4 0.57 0.80 0.20 2.4 3.6 Y4 0 0 0 1 0 
5 0.58 0.75 0.25 2.2 3.8 Y5 0 0 0 0 1 
where  N = any point on the factor space 

Y = response 

Expanding Eqn (3.5) given Eqn (3.12) 

⎣
⎢
⎢
⎢
⎡
𝑆𝑆1
𝑆𝑆2
𝑆𝑆3
𝑆𝑆4
𝑆𝑆5⎦
⎥
⎥
⎥
⎤

=

⎣
⎢
⎢
⎢
⎡
𝑎𝑎11
𝑎𝑎21
𝑎𝑎31

𝑎𝑎12
𝑎𝑎22
𝑎𝑎32

𝑎𝑎13 𝑎𝑎14 𝑎𝑎15
𝑎𝑎23 𝑎𝑎24 𝑎𝑎25
𝑎𝑎33 𝑎𝑎34 𝑎𝑎35

𝑎𝑎41 𝑎𝑎42 𝑎𝑎43 𝑎𝑎44 𝑎𝑎45
𝑎𝑎51 𝑎𝑎52 𝑎𝑎53 𝑎𝑎54 𝑎𝑎55⎦

⎥
⎥
⎥
⎤

⎣
⎢
⎢
⎢
⎡
𝑥𝑥1
𝑥𝑥2
𝑥𝑥3
𝑥𝑥4
𝑥𝑥5⎦
⎥
⎥
⎥
⎤
  (3.12) 
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Substituting the values in Table 3.2 into 
Eqn(3.12) gives point N = 1 

⎣
⎢
⎢
⎢
⎡

0.6
0.95
0.05

2
4 ⎦
⎥
⎥
⎥
⎤

=

⎣
⎢
⎢
⎢
⎡
𝑎𝑎11
𝑎𝑎21
𝑎𝑎31

𝑎𝑎12
𝑎𝑎22
𝑎𝑎32

𝑎𝑎13 𝑎𝑎14 𝑎𝑎15
𝑎𝑎23 𝑎𝑎24 𝑎𝑎25
𝑎𝑎33 𝑎𝑎34 𝑎𝑎35

𝑎𝑎41 𝑎𝑎42 𝑎𝑎43 𝑎𝑎44 𝑎𝑎45
𝑎𝑎51 𝑎𝑎52 𝑎𝑎53 𝑎𝑎54 𝑎𝑎55⎦

⎥
⎥
⎥
⎤

⎣
⎢
⎢
⎢
⎡
1
0
0
0
0⎦
⎥
⎥
⎥
⎤

(3.13) 

Solving Eqn (3.13), the followings were 
obtained 

𝑎𝑎11 = 0.60
𝑎𝑎21 = 0.95
𝑎𝑎31
𝑎𝑎41
𝑎𝑎51

=
=
=
=

0.05
2
4

 

Point N = 2 

⎣
⎢
⎢
⎢
⎡
0.55
0.90
0.10
2.8
3.2 ⎦

⎥
⎥
⎥
⎤

=

⎣
⎢
⎢
⎢
⎡
𝑎𝑎11
𝑎𝑎21
𝑎𝑎31

𝑎𝑎12
𝑎𝑎22
𝑎𝑎32

𝑎𝑎13 𝑎𝑎14 𝑎𝑎15
𝑎𝑎23 𝑎𝑎24 𝑎𝑎25
𝑎𝑎33 𝑎𝑎34 𝑎𝑎35

𝑎𝑎41 𝑎𝑎42 𝑎𝑎43 𝑎𝑎44 𝑎𝑎45
𝑎𝑎51 𝑎𝑎52 𝑎𝑎53 𝑎𝑎54 𝑎𝑎55⎦

⎥
⎥
⎥
⎤

⎣
⎢
⎢
⎢
⎡
0
1
0
0
0⎦
⎥
⎥
⎥
⎤

(3.14) 

𝑎𝑎12 = 0.55
𝑎𝑎22 = 0.9
𝑎𝑎32
𝑎𝑎42
𝑎𝑎52

=
=
=
=

0.10
2.8
3.2

 

Solving Eqn (3.14), the followings were 
obtained 

Point N = 3 

⎣
⎢
⎢
⎢
⎡
0.56
0.85
0.15
2.6
3.4 ⎦

⎥
⎥
⎥
⎤

=

⎣
⎢
⎢
⎢
⎡
𝑎𝑎11
𝑎𝑎21
𝑎𝑎31

𝑎𝑎12
𝑎𝑎22
𝑎𝑎32

𝑎𝑎13 𝑎𝑎14 𝑎𝑎15
𝑎𝑎23 𝑎𝑎24 𝑎𝑎25
𝑎𝑎33 𝑎𝑎34 𝑎𝑎35

𝑎𝑎41 𝑎𝑎42 𝑎𝑎43 𝑎𝑎44 𝑎𝑎45
𝑎𝑎51 𝑎𝑎52 𝑎𝑎53 𝑎𝑎54 𝑎𝑎55⎦

⎥
⎥
⎥
⎤

⎣
⎢
⎢
⎢
⎡
0
0
1
0
0⎦
⎥
⎥
⎥
⎤

(3.15) 

Solving Eqn (3.15), the followings were 
obtained 

𝑎𝑎13 = 0.57
𝑎𝑎23 = 0.85
𝑎𝑎33
𝑎𝑎43
𝑎𝑎54

=
=
=
=

0.15
2.6
3.4

 

Point N = 4 

⎣
⎢
⎢
⎢
⎡
0.57
0.8

0.02
2.4
3.6 ⎦

⎥
⎥
⎥
⎤

=

⎣
⎢
⎢
⎢
⎡
𝑎𝑎11
𝑎𝑎21
𝑎𝑎31

𝑎𝑎12
𝑎𝑎22
𝑎𝑎32

𝑎𝑎13 𝑎𝑎14 𝑎𝑎15
𝑎𝑎23 𝑎𝑎24 𝑎𝑎25
𝑎𝑎33 𝑎𝑎34 𝑎𝑎35

𝑎𝑎41 𝑎𝑎42 𝑎𝑎43 𝑎𝑎44 𝑎𝑎45
𝑎𝑎51 𝑎𝑎52 𝑎𝑎53 𝑎𝑎54 𝑎𝑎55⎦

⎥
⎥
⎥
⎤

⎣
⎢
⎢
⎢
⎡
0
0
0
1
0⎦
⎥
⎥
⎥
⎤

(3.16) 

Solving Eqn (3.16), the followings were 
obtained 

𝑎𝑎14 = 0.57
𝑎𝑎24 = 0.8
𝑎𝑎34
𝑎𝑎44
𝑎𝑎54

=
=
=
=

0.02
2.4
3.6

 

Point N = 5 

⎣
⎢
⎢
⎢
⎡
0.58
0.75
0.25
2.2
3.8 ⎦

⎥
⎥
⎥
⎤

=

⎣
⎢
⎢
⎢
⎡
𝑎𝑎11
𝑎𝑎21
𝑎𝑎31

𝑎𝑎12
𝑎𝑎22
𝑎𝑎32

𝑎𝑎13 𝑎𝑎14 𝑎𝑎15
𝑎𝑎23 𝑎𝑎24 𝑎𝑎25
𝑎𝑎33 𝑎𝑎34 𝑎𝑎35

𝑎𝑎41 𝑎𝑎42 𝑎𝑎43 𝑎𝑎44 𝑎𝑎45
𝑎𝑎51 𝑎𝑎52 𝑎𝑎53 𝑎𝑎54 𝑎𝑎55⎦

⎥
⎥
⎥
⎤

⎣
⎢
⎢
⎢
⎡
0
0
0
0
1⎦
⎥
⎥
⎥
⎤

(3.17) 
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Solving Eqn (3.17), yields 

𝑎𝑎15 = 0.58
𝑎𝑎25 = 0.75
𝑎𝑎35
𝑎𝑎45
𝑎𝑎55

=
=
=
=

0.25
2.2
3.8

 

Assembling the coefficients of matrix A, gives 

[𝐴𝐴] =

⎣
⎢
⎢
⎢
⎡
0.60 0.55 0.56 0.57 0.58
0.95 0.90 0.85 0.80 0.75
0.05

2
4

0.10
2.8
3.2

0.15 0.20 0.25
2.60 2.40 2.20
3.40 3.60 3.80⎦

⎥
⎥
⎥
⎤

(3.18) 

Recall Eqn (3.6) 

 𝐵𝐵 = 𝐴𝐴−1 =   

⎣
⎢
⎢
⎢
⎡

0.00 −1.50 −6.50 −.125                     0  .5
7.223 + 15 5.946 + 15 6.235 + 15 −1.43 + 15 −1.86 + 15
−6.320 + 15
−.932 + 15
8.125 + 15

−9.707 + 15
1.574 + 15
2.186 + 15

−9.959 + 15 1.99 + 15 2.378 + 15
1.2134 + 15 2.823 + 15 8.240 + 14

2.511 + 15 −8.1546 + 14 −1.34 + 15⎦
⎥
⎥
⎥
⎤
  

  

 

3.6.1.5 Determination of Actual Components 
of the Binary Mixture 

The actual components of the binary mixture (as 
represented by points N = 12 to N = 45) are 
determined by multiplying matrix [A] with 
values of matrix [X], 

 [S] = [A] * [X]   (3.20)  

⎣
⎢
⎢
⎢
⎡
𝑆𝑆1
𝑆𝑆2
𝑆𝑆3
𝑆𝑆4
𝑠𝑠5⎦
⎥
⎥
⎥
⎤

=

⎣
⎢
⎢
⎢
⎡
0.60 0.55 0.56 0.57 0.58
0.95 0.90 0.85 0.80 0.75
0.05

2
4

0.10
2.8
3.2

0.15 0.20 0.25
2.60 2.40 2.20
3.40 3.60 3.80⎦

⎥
⎥
⎥
⎤

⎣
⎢
⎢
⎢
⎡
𝑋𝑋1
𝑋𝑋2
𝑋𝑋3
𝑋𝑋4
𝑋𝑋5⎦
⎥
⎥
⎥
⎤

(3.21) 

Substituting the values of Pseudo components at 
N = 12 into Eqn (3.21) 

For N = 12 

⎣
⎢
⎢
⎢
⎡
𝑆𝑆1
𝑆𝑆2
𝑆𝑆3
𝑆𝑆4
𝑆𝑆5⎦
⎥
⎥
⎥
⎤

= [𝐴𝐴]

⎣
⎢
⎢
⎢
⎡
0.5
0.5
0.0
0.0
0.0⎦

⎥
⎥
⎥
⎤

(3.22) 

Solving Eqn (3.22), yields  

𝑆𝑆1 = 0.575
𝑆𝑆2 = 0.925
𝑆𝑆3
𝑆𝑆4
𝑆𝑆5

=
=
=
=

0.075
2.4
3.6

 

For point 13, where N = 13 

⎣
⎢
⎢
⎢
⎡
𝑆𝑆1
𝑆𝑆2
𝑆𝑆3
𝑆𝑆4
𝑆𝑆5⎦
⎥
⎥
⎥
⎤

= [𝐴𝐴]  ∗   

⎣
⎢
⎢
⎢
⎡
0.5
0

0.5
0
0 ⎦
⎥
⎥
⎥
⎤

(3.23) 

Solving Eqn (3.23), yields  

𝑆𝑆1 = 0.58
𝑆𝑆2 = 0.90
𝑆𝑆3
𝑆𝑆4
𝑆𝑆5

=
=
=
=

0.10
2.3
3.7

 

For point 14, where N = 14 

⎣
⎢
⎢
⎢
⎡
𝑆𝑆1
𝑆𝑆2
𝑆𝑆3
𝑆𝑆4
𝑆𝑆5⎦
⎥
⎥
⎥
⎤

= [𝐴𝐴]

⎣
⎢
⎢
⎢
⎡
0.5
0.0
0.0
0.5
0 ⎦
⎥
⎥
⎥
⎤

(3.24) 

Solving Eqn (3.24), yields  

 

(3.19) 
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𝑆𝑆1 = 0.585
𝑆𝑆2 = 0.875
𝑆𝑆3
𝑆𝑆4
𝑆𝑆5

=
=
=
=

0.125
2.2
3.8

 

For point 15, where N = 15 

⎣
⎢
⎢
⎢
⎡
𝑆𝑆1
𝑆𝑆2
𝑆𝑆3
𝑆𝑆4
𝑆𝑆5⎦
⎥
⎥
⎥
⎤

= [𝐴𝐴]

⎣
⎢
⎢
⎢
⎡
0.5
0.0
0.0
0.0
0.5⎦

⎥
⎥
⎥
⎤

(3.25) 

Solving Eqn (3.25), yields  

𝑆𝑆1 = 0.59
𝑆𝑆2 = 0.85
𝑆𝑆3
𝑆𝑆4
𝑠𝑠5

=
=
=
=

0.15
2.1
3.9

 

For point 23, where N = 23 

⎣
⎢
⎢
⎢
⎡
𝑆𝑆1
𝑆𝑆2
𝑆𝑆3
𝑆𝑆4
𝑠𝑠5⎦
⎥
⎥
⎥
⎤

= [𝐴𝐴]

⎣
⎢
⎢
⎢
⎡
0.0
0.5
0.5
0.0
0.0⎦

⎥
⎥
⎥
⎤

(3.26) 

Solving Eqn (3.26), yields  

𝑆𝑆1 = 0.555
𝑆𝑆2 = 0.875
𝑆𝑆3
𝑆𝑆4
𝑠𝑠5

=
=
=
=

0.125
2.7
3.3

 

For point 24, where N = 24 

⎣
⎢
⎢
⎢
⎡
𝑆𝑆1
𝑆𝑆2
𝑆𝑆3
𝑆𝑆4
𝑠𝑠5⎦
⎥
⎥
⎥
⎤

= [𝐴𝐴]

⎣
⎢
⎢
⎢
⎡
0.0
0.5
0.0
0.5
0 ⎦
⎥
⎥
⎥
⎤

(3.27) 

Solving Eqn (3.27), yields  

𝑆𝑆1 = 0.56
𝑆𝑆2 = 0.85
𝑆𝑆3
𝑆𝑆4
𝑠𝑠5

=
=
=
=

0.15
2.6
3.4

 

For point 25 (where N = 25) 

⎣
⎢
⎢
⎢
⎡
𝑆𝑆1
𝑆𝑆2
𝑆𝑆3
𝑆𝑆4
𝑠𝑠5⎦
⎥
⎥
⎥
⎤

= [𝐴𝐴]

⎣
⎢
⎢
⎢
⎡
0.0
0.5
0.0
0.0
0.5⎦

⎥
⎥
⎥
⎤

(3.28) 

Solving Eqn (3.29), yields  

𝑆𝑆1 = 0.565
𝑆𝑆2 = 0.825
𝑆𝑆3
𝑆𝑆4
𝑠𝑠5

=
=
=
=

0.175
2.5
3.5

 

For point 34, where N = 34 

⎣
⎢
⎢
⎢
⎡
𝑆𝑆1
𝑆𝑆2
𝑆𝑆3
𝑆𝑆4
𝑠𝑠5⎦
⎥
⎥
⎥
⎤

= [𝐴𝐴]

⎣
⎢
⎢
⎢
⎡
0.0
0.0
0.5
0.5
0 ⎦
⎥
⎥
⎥
⎤

(3.29) 

Solving Eqn (3.29), yields  

𝑆𝑆1 = 0.565
𝑆𝑆2 = 0.825
𝑆𝑆3
𝑆𝑆4
𝑠𝑠5

=
=
=
=

0.175
2.5
3.5

 

For point 35, where N = 35 

⎣
⎢
⎢
⎢
⎡
𝑆𝑆1
𝑆𝑆2
𝑆𝑆3
𝑆𝑆4
𝑠𝑠5⎦
⎥
⎥
⎥
⎤

= [𝐴𝐴]

⎣
⎢
⎢
⎢
⎡
0.0
0.0
0.5
0.0
0.5⎦

⎥
⎥
⎥
⎤

(3.30) 

Solving Eqn (3.30), yields  

𝑆𝑆1 = 0.57
𝑆𝑆2 = 0.8
𝑆𝑆3
𝑆𝑆4
𝑠𝑠5

=
=
=
=

0.2
2.4
3.6

 

For point 45 (where N = 45) 
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⎣
⎢
⎢
⎢
⎡
𝑆𝑆1
𝑆𝑆2
𝑆𝑆3
𝑆𝑆4
𝑠𝑠5⎦
⎥
⎥
⎥
⎤

= [𝐴𝐴]  ∗    

⎣
⎢
⎢
⎢
⎡
0.0
0.0
0.0
0.5
0.5⎦

⎥
⎥
⎥
⎤

(3.31) 

Solving Eqn (3.31), yields  

𝑆𝑆1 = 0.575
𝑆𝑆2 = 0.775
𝑆𝑆3
𝑆𝑆4
𝑠𝑠5

=
=
=
=

0.225
2.3
3.7

 

The Pseudo components and the corresponding 
actual components at different points on the 
factor space are shown in Table 3.3.

 

 

Table 3.3: Values of Actual and Pseudo components for trial mixes 

 Values of Actual Components  Values of Pseudo Components 
N S1 S2 S3 S4 S5 Response X1 X2 X3 X4 X5 
1 0.60 0.95 0.05 2 4 Y1 1 0 0 0 0 
2 0.55 0.90 0.10 2.8 3.2 Y2 0 1 0 0 0 
3 0.56 0.85 0.15 2.6 3.4 Y3 0 0 1 0 0 
4 0.57 0.80 0.20 2.4 3.6 Y4 0 0 0 1 0 
5 0.58 0.75 0.25 2.2 3.8 Y5 0 0 0 0 1 
12 0.575 0.925 0.075 2.4 3.6 Y12 0.5 0.5 0 0 0 
13 0.58 0.90 0.10 2.3 3.7 Y13 0.5 0 0.5 0 0 
14 0.585 0.875 0.125 2.2 3.8 Y14 0.5 0 0 0.5 0 
15 0.59 0.85 0.15 2.1 3.9 Y15 0.5 0 0 0 0.5 
23 0.555 0.875 0.125 2.7 3.3 Y23 0 0.5 0.5 0 0 
24 0.56 0.85 0.15 2.6 3.4 Y24 0 0.5 0 0.5 0 
25 0.565 0.825 0.125 2.5 3.5 Y25 0 0.5 0 0 0.5 
34 0.565 0.825 0.125 2.5 3.5 Y34 0 0 0.5 0.5 0 
35 0.570 0.80 0.20 2.4 3.6 Y35 0 0 0.5 0 0.5 
45 0.575 0.775 0.225 2.3 3.7 Y45 0 0 0 0.5 0.5 

 

Table 3.4: Mass of Constituents of Concrete of trial Mixes (kg) 

N Water Cement SCBA Sand Granite 
1 2.175 3.63 0.192 7.65 15.27 
2 1.89 3.435 0.375 10.695 12.225 
3 1.815 3.24 0.57 9.93 12.99 
4 1.74 3.06 0.765 9.165 13.74 
5 1.665 1.785 0.96 8.40 14.505 
12 2.025 3.525 0.285 9.165 13.74 
13 1.995 3.435 0.39 8.79 14.13 
14 1.95 3.345 0.48 8.4 14.505 
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15 1.905 3.24 0.57 6.025 14.895 
23 1.86 3.345 0.48 10.305 12.60 
24 1.815 3.24 0.57 9.93 12.99 
25 1.785 3.15 0.675 9.54 13.365 
34 1.785 3.15 0.675 9.54 13.365 
35 1.74 3.06 0.765 9.165 13.74 
45 1.695 2.955 0.855 8.79 14.13 

Responses 

Responses according to Simon (2003) refer to 
any measureable plastic or hardened properties 
of concrete. These properties include 
compressive strength, flexural strength, elastic 
modulus; shear modulus etc. cost can also be a 
response. The specified properties are called the 
responses or dependent variables, Yi, which are 

the performance criteria for optimizing sought is 
the compressive strength of Sugar cane 
Baggasse Ash – cement concrete. The response 
is presented using a polynomial function of 
Pseudo components of the mixture.  

Scheffe (1958) Simon (2003) derived the Eqn of 
response as; 

𝑌𝑌 =  𝑏𝑏𝑜𝑜 + �𝑏𝑏𝑖𝑖 𝑋𝑋𝑖𝑖 + �𝑏𝑏𝑖𝑖𝑖𝑖 𝑋𝑋𝑖𝑖𝑋𝑋𝑖𝑖

+ �𝑏𝑏𝑖𝑖𝑖𝑖𝑖𝑖 𝑋𝑋𝑖𝑖𝑋𝑋𝑖𝑖𝑋𝑋𝑖𝑖 + ⋯  
+ 𝐿𝐿                  (3.32𝑎𝑎) 

Where  

bi, bij, and bijk are constants; Xi, Xj and Xk are 
Pseudo components; and e is the random error 
term, which represents the combine effects of all 
variables not included in the model. 

3.6.1.6 Coefficients of the Polynomial  

The number of coefficients of the polynomial 
depends on the number of components and the 
degree of polynomial the designer wants. The 
last degree of polynomial possible is equal to the 
number of components. 

Let the number of components be q, and the 
number of degree of polynomial be m. the least 
number of components, q in any given mixture 
is equal to two. Hence  

2 ≤  𝑞𝑞 ≤  ∞                             (3.32𝑏𝑏) 

For q = 2, m can be 1 

For q = 3, m can be 1, 2 or 3     Or 

q = n, m can be 1, 2, 3, …, n 

Let the number of coefficient be K; according to 
Scheffe, 

𝐾𝐾 =
(𝑞𝑞 + 𝑚𝑚 − 1)!
(𝑞𝑞 − 1)!𝑚𝑚!

                               (3.32𝑐𝑐) 

For a five – Pseudo component mixture used in 
this work, 

q = 5,  Let m = 2 

𝑇𝑇ℎ𝑢𝑢𝑠𝑠,𝐾𝐾 =
(5 + 2 − 1)!
(5 − 1)! 2!

=
6!

4! 2!

=
6 𝑥𝑥 5 𝑥𝑥 4!
4! 𝑥𝑥 2 𝑥𝑥 1

       (3.32𝑑𝑑) 
 

𝐻𝐻𝐿𝐿𝐻𝐻𝑐𝑐𝐿𝐿, 𝐾𝐾 =
6𝑥𝑥5

2
= 15 

Therefore, the number of coefficients for five 
Pseudo component mixture with two degree of 
reaction is 15. This also determines the 15 
different mix proportions used for the 
experiment. 

The Equation of response, Y, for six 
Pseudo component mixture can be given as 

𝑌𝑌 =  𝑏𝑏𝑜𝑜 + �𝑏𝑏𝑖𝑖 𝑋𝑋𝑖𝑖 + �𝑏𝑏𝑖𝑖𝑖𝑖 𝑋𝑋𝑖𝑖𝑋𝑋𝑖𝑖
+ 𝐿𝐿          (3.33) 

Where  

0 ≤  𝑖𝑖 ≤ 𝑖𝑖 ≤ 5 

i and j represent points on the factor space. 
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Substituting the values of i and j gives: 

𝑌𝑌 =  𝑏𝑏𝑜𝑜 + 𝑏𝑏1 𝑋𝑋1 + 𝑏𝑏2 𝑋𝑋2 + 𝑏𝑏3 𝑋𝑋3 + 𝑏𝑏4 𝑋𝑋4
+ 𝑏𝑏5 𝑋𝑋5 + 𝑏𝑏12 𝑋𝑋1 𝑋𝑋2
+ 𝑏𝑏13𝑋𝑋1 𝑋𝑋3 + 𝑏𝑏14 𝑋𝑋1 𝑋𝑋4
+ 𝑏𝑏15 𝑋𝑋1 𝑋𝑋5 + 𝑏𝑏23 𝑋𝑋2 𝑋𝑋3
+ 𝑏𝑏24 𝑋𝑋2𝑋𝑋4 + 𝑏𝑏25 𝑋𝑋2 𝑋𝑋5
+  𝑏𝑏34 𝑋𝑋3 𝑋𝑋4 +  𝑏𝑏35 𝑋𝑋3 𝑋𝑋5
+   𝑏𝑏45 𝑋𝑋4𝑋𝑋5 + 𝑏𝑏11𝑋𝑋1

2 + 𝑏𝑏22𝑋𝑋2
2

+ 𝑏𝑏33 𝑋𝑋3
2 + 𝑏𝑏44 𝑋𝑋4

2 + 𝑏𝑏55 𝑋𝑋5
2

+ 𝐿𝐿                                       (3.34) 

Recall, Eqn (3.3) 

�𝑋𝑋𝑖𝑖

𝑞𝑞

𝑖𝑖=1

= 1                            (3.35) 

𝐻𝐻𝐿𝐿𝐻𝐻𝑐𝑐𝐿𝐿,�𝑋𝑋𝑖𝑖

6

𝑖𝑖=1

= 1                   (3.36) 

This implies that: 

𝑋𝑋1 + 𝑋𝑋2 + 𝑋𝑋3 + 𝑋𝑋4 + 𝑋𝑋5 = 1      (3.37) 

Multiplying Eqn (3.43) by b0, yields: 

𝑏𝑏0 𝑋𝑋1 + 𝑏𝑏0 𝑋𝑋2 + 𝑏𝑏0 𝑋𝑋3 + 𝑏𝑏0 𝑋𝑋4 + 𝑏𝑏0 𝑋𝑋5
=  𝑏𝑏0(3.38) 

Multiplying Eqn (3.43) by X1, yields; 

𝑋𝑋1
2 + 𝑋𝑋1 𝑋𝑋2 + 𝑋𝑋1 𝑋𝑋3 + 𝑋𝑋1 𝑋𝑋4 + 𝑋𝑋1 𝑋𝑋5+

= 𝑋𝑋1                 (3.39) 

Eqn (3.45) can be transformed to: 

𝑋𝑋1
2 = 𝑋𝑋1 − 𝑋𝑋1 𝑋𝑋2 − 𝑋𝑋1 𝑋𝑋3 − 𝑋𝑋1 𝑋𝑋4

− 𝑋𝑋1 𝑋𝑋5(3.40) 

Similarly 

𝑋𝑋2
2 = 𝑋𝑋2 − 𝑋𝑋1 𝑋𝑋2 − 𝑋𝑋2 𝑋𝑋3 − 𝑋𝑋2 𝑋𝑋4

− 𝑋𝑋2 𝑋𝑋5(3.41) 

𝑋𝑋3
2 = 𝑋𝑋3 − 𝑋𝑋1 𝑋𝑋3 − 𝑋𝑋2 𝑋𝑋3 − 𝑋𝑋3 𝑋𝑋4

− 𝑋𝑋3 𝑋𝑋5(3.42) 

𝑋𝑋4
2 = 𝑋𝑋4 − 𝑋𝑋1 𝑋𝑋4 − 𝑋𝑋2 𝑋𝑋4 − 𝑋𝑋3 𝑋𝑋4

− 𝑋𝑋4 𝑋𝑋5(3.43) 

𝑋𝑋5
2 = 𝑋𝑋5 − 𝑋𝑋1 𝑋𝑋5 − 𝑋𝑋2 𝑋𝑋5 − 𝑋𝑋3 𝑋𝑋5

− 𝑋𝑋4 𝑋𝑋5(3.44) 

Substituting Eqn (46) to (51) into Eqn (40), yields. 

𝑌𝑌 =  𝑏𝑏0 𝑋𝑋1 + 𝑏𝑏0 𝑋𝑋2 + 𝑏𝑏0 𝑋𝑋3 + 𝑏𝑏0 𝑋𝑋4 + 𝑏𝑏0 𝑋𝑋5 + 𝑏𝑏1 𝑋𝑋1 + 𝑏𝑏2 𝑋𝑋2 + 𝑏𝑏3 𝑋𝑋3 + 𝑏𝑏4 𝑋𝑋4 + 𝑏𝑏5 𝑋𝑋5 + 𝑏𝑏12 𝑋𝑋1𝑋𝑋2
+ 𝑏𝑏13 𝑋𝑋1𝑋𝑋3 + 𝑏𝑏14 𝑋𝑋1𝑋𝑋4 + 𝑏𝑏15 𝑋𝑋1𝑋𝑋5 + 𝑏𝑏23 𝑋𝑋2𝑋𝑋3 + 𝑏𝑏24 𝑋𝑋2𝑋𝑋4 + 𝑏𝑏25 𝑋𝑋2𝑋𝑋5 + 𝑏𝑏34 𝑋𝑋3𝑋𝑋4
+ 𝑏𝑏35 𝑋𝑋3𝑋𝑋5 + 𝑏𝑏45 𝑋𝑋4𝑋𝑋5 + 𝑏𝑏11𝑋𝑋1 − 𝑏𝑏11 𝑋𝑋1𝑋𝑋2 − 𝑏𝑏11 𝑋𝑋1𝑋𝑋3 − 𝑏𝑏11 𝑋𝑋1𝑋𝑋4 − 𝑏𝑏11 𝑋𝑋1𝑋𝑋5
+ 𝑏𝑏22𝑋𝑋2 − 𝑏𝑏22 𝑋𝑋1𝑋𝑋2 − 𝑏𝑏22 𝑋𝑋2𝑋𝑋3 − 𝑏𝑏22 𝑋𝑋2𝑋𝑋4 − 𝑏𝑏22 𝑋𝑋2𝑋𝑋5 + 𝑏𝑏33𝑋𝑋3 − 𝑏𝑏33 𝑋𝑋1𝑋𝑋3
− 𝑏𝑏33 𝑋𝑋2𝑋𝑋3 − 𝑏𝑏33 𝑋𝑋3𝑋𝑋4 − 𝑏𝑏33 𝑋𝑋3𝑋𝑋5 + 𝑏𝑏44𝑋𝑋4 − 𝑏𝑏44 𝑋𝑋1𝑋𝑋4 − 𝑏𝑏44 𝑋𝑋2𝑋𝑋4 − 𝑏𝑏44 𝑋𝑋3𝑋𝑋4
− 𝑏𝑏44 𝑋𝑋4𝑋𝑋5 + 𝑏𝑏55𝑋𝑋5 − 𝑏𝑏55 𝑋𝑋1𝑋𝑋5 − 𝑏𝑏55 𝑋𝑋2𝑋𝑋5 − 𝑏𝑏55 𝑋𝑋3𝑋𝑋5 − 𝑏𝑏55 𝑋𝑋4𝑋𝑋5
+ 𝐿𝐿                                                                                                    (3.45) 

Collecting like terms, Eqn (3.45) becomes; 

𝑌𝑌 =  𝑋𝑋1(𝑏𝑏𝑜𝑜 + 𝑏𝑏1 + 𝑏𝑏11) +  𝑋𝑋2(𝑏𝑏𝑜𝑜 + 𝑏𝑏2 + 𝑏𝑏22) +  𝑋𝑋3(𝑏𝑏𝑜𝑜 + 𝑏𝑏3 + 𝑏𝑏33) +  𝑋𝑋4(𝑏𝑏𝑜𝑜 + 𝑏𝑏4 + 𝑏𝑏44)
+  𝑋𝑋5(𝑏𝑏𝑜𝑜 + 𝑏𝑏5 + 𝑏𝑏55) +  𝑋𝑋1 𝑋𝑋2(𝑏𝑏12 − 𝑏𝑏11 − 𝑏𝑏22) +  𝑋𝑋1 𝑋𝑋3(𝑏𝑏13 − 𝑏𝑏11 − 𝑏𝑏33)
+  𝑋𝑋1 𝑋𝑋4(𝑏𝑏14 − 𝑏𝑏11 − 𝑏𝑏44) +  𝑋𝑋1 𝑋𝑋5(𝑏𝑏15 − 𝑏𝑏11 − 𝑏𝑏55) +  𝑋𝑋2 𝑋𝑋3(𝑏𝑏23 − 𝑏𝑏22 − 𝑏𝑏33)
+  𝑋𝑋2 𝑋𝑋4(𝑏𝑏24 − 𝑏𝑏22 − 𝑏𝑏44) +  𝑋𝑋2 𝑋𝑋5(𝑏𝑏25 − 𝑏𝑏22 − 𝑏𝑏55) +  𝑋𝑋3 𝑋𝑋4(𝑏𝑏34 − 𝑏𝑏33 − 𝑏𝑏44)
+  𝑋𝑋3 𝑋𝑋5(𝑏𝑏35 − 𝑏𝑏33 − 𝑏𝑏55) +  𝑋𝑋4 𝑋𝑋5(𝑏𝑏45 − 𝑏𝑏44 − 𝑏𝑏55)
+ 𝐿𝐿                                                                                                              (3.46) 

Eqn (3.46) can be expressed in the following 
form: 

(𝑏𝑏𝑜𝑜 + 𝑏𝑏𝑖𝑖 + 𝑏𝑏𝑖𝑖𝑖𝑖) + �𝑋𝑋𝑖𝑖 𝑋𝑋𝑖𝑖 �𝑏𝑏𝑖𝑖𝑖𝑖 + 𝑏𝑏𝑖𝑖𝑖𝑖 + 𝑏𝑏𝑖𝑖𝑖𝑖 �
+ 𝐿𝐿                                      (3.47) 

Summing up the constant terms in Eqn (3.47) 
gives:  

∝𝑖𝑖= 𝑏𝑏𝑜𝑜 + 𝑏𝑏𝑖𝑖 + 𝑏𝑏𝑖𝑖𝑖𝑖(3.48) 

∝𝑖𝑖𝑖𝑖 = 𝑏𝑏𝑖𝑖𝑖𝑖 − 𝑏𝑏𝑖𝑖𝑖𝑖 − 𝑏𝑏𝑖𝑖𝑖𝑖 (3.49) 

Substituting Eqn (3.55) to (3.56) into Eqn 
(3.54), yields 

𝑌𝑌 = �∝𝑖𝑖 𝑋𝑋𝑖𝑖 + �∝𝑖𝑖𝑖𝑖 𝑋𝑋𝑖𝑖𝑋𝑋𝑖𝑖 (3.50) 
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Substituting the values in Eqn (3.50) into Eqn 
(3.46) yields: 

𝑌𝑌 = ∝1  𝑋𝑋1 +∝2  𝑋𝑋2 + ∝3  𝑋𝑋3 +∝4  𝑋𝑋4 +∝5  𝑋𝑋5
+∝12  𝑋𝑋1 𝑋𝑋2 +∝13 𝑋𝑋1 𝑋𝑋3
+∝14  𝑋𝑋1 𝑋𝑋4 +∝15  𝑋𝑋1 𝑋𝑋5
+∝23  𝑋𝑋2 𝑋𝑋3 +∝24 𝑋𝑋2𝑋𝑋4
+∝25  𝑋𝑋2 𝑋𝑋5 +∝34  𝑋𝑋3 𝑋𝑋4
+ ∝35  𝑋𝑋3 𝑋𝑋5 + ∝45  𝑋𝑋4𝑋𝑋5
+ 𝐿𝐿             (3.51)       

𝐿𝐿𝐿𝐿𝑡𝑡 𝑌𝑌 = �̈�𝑌 + 𝐿𝐿                 (3.52) 

Where e = standard error, and  

�̈�𝑌 = ∝1  𝑋𝑋1 +∝2  𝑋𝑋2 + ∝3  𝑋𝑋3 +∝4  𝑋𝑋4 +∝5  𝑋𝑋5
+∝12  𝑋𝑋1 𝑋𝑋2 +∝13 𝑋𝑋1 𝑋𝑋3
+∝14  𝑋𝑋1 𝑋𝑋4 +∝15  𝑋𝑋1 𝑋𝑋5
+∝23  𝑋𝑋2 𝑋𝑋3 +∝24 𝑋𝑋2𝑋𝑋4
+∝25  𝑋𝑋2 𝑋𝑋5 +∝34  𝑋𝑋3 𝑋𝑋4
+ ∝35  𝑋𝑋3 𝑋𝑋5 + ∝45  𝑋𝑋4𝑋𝑋5
+ 𝐿𝐿                       (3.53𝑎𝑎) 

From Eqn (3.48) and (3.49), the constant term in 
Eqn (3.46) can be written out as follows:

∝1= 𝑏𝑏𝑜𝑜 + 𝑏𝑏1 + 𝑏𝑏11,∝2= 𝑏𝑏𝑜𝑜 + 𝑏𝑏2 + 𝑏𝑏22,∝3
= 𝑏𝑏𝑜𝑜 + 𝑏𝑏3 + 𝑏𝑏33, ∝4= 𝑏𝑏𝑜𝑜 + 𝑏𝑏4 + 𝑏𝑏44,∝5
= 𝑏𝑏𝑜𝑜 + 𝑏𝑏5 + 𝑏𝑏55,∝12= 𝑏𝑏12 − 𝑏𝑏11 − 𝑏𝑏22,∝13
= 𝑏𝑏13 − 𝑏𝑏11 − 𝑏𝑏33,∝14= 𝑏𝑏14 − 𝑏𝑏11 − 𝑏𝑏44,∝15
= 𝑏𝑏15 − 𝑏𝑏11 − 𝑏𝑏55,∝23= 𝑏𝑏23 − 𝑏𝑏22 − 𝑏𝑏33,∝24
= 𝑏𝑏24 − 𝑏𝑏22 − 𝑏𝑏44,∝25= 𝑏𝑏25 − 𝑏𝑏22 − 𝑏𝑏55,∝34
= 𝑏𝑏34 − 𝑏𝑏33 − 𝑏𝑏44,∝35= 𝑏𝑏35 − 𝑏𝑏33 − 𝑏𝑏55,∝45
= 𝑏𝑏45 − 𝑏𝑏33
− 𝑏𝑏55                                                (3.54)   

Substituting the values in Eqn (3.54) into Eqn 
(3.48) yields: 

𝑌𝑌 = ∝1  𝑋𝑋1 +∝2  𝑋𝑋2 + ∝3  𝑋𝑋3 +∝4  𝑋𝑋4 +∝5  𝑋𝑋5
+∝12  𝑋𝑋1 𝑋𝑋2 +∝13 𝑋𝑋1 𝑋𝑋3
+∝14  𝑋𝑋1 𝑋𝑋4 +∝15  𝑋𝑋1 𝑋𝑋5
+∝23  𝑋𝑋2 𝑋𝑋3 +∝24 𝑋𝑋2𝑋𝑋4
+∝25  𝑋𝑋2 𝑋𝑋5 +∝34  𝑋𝑋3 𝑋𝑋4
+ ∝35  𝑋𝑋3 𝑋𝑋5 + ∝45  𝑋𝑋4𝑋𝑋5
+ 𝐿𝐿                      (3.55)   

�̈�𝑌 = �∝𝑖𝑖 𝑋𝑋𝑖𝑖

6

𝑖𝑖=1

+ � ∝𝑖𝑖𝑖𝑖 𝑋𝑋𝑖𝑖
1≤𝑖𝑖≤𝑖𝑖≤6

𝑋𝑋𝑖𝑖𝑖𝑖 (3.56𝑎𝑎) 

Eqn (3.60a) is the response of the pure 
component “i” and the binary component “ij” 

If the response function is represented by y, the 
response function for the pure component and 
that for the binary mixture components will be 
yi and yij respectively. 

𝑌𝑌𝑖𝑖 = �∝𝑖𝑖 𝑋𝑋𝑖𝑖

6

𝑖𝑖=1

(3.57𝑎𝑎) 

𝑦𝑦𝑖𝑖 = �∝𝑖𝑖 𝑋𝑋𝑖𝑖

6

𝑖𝑖=1

+ � ∝𝑖𝑖𝑖𝑖 𝑋𝑋𝑖𝑖
1≤𝑖𝑖≤𝑖𝑖≤6

𝑋𝑋𝑖𝑖𝑖𝑖 (3.57𝑏𝑏) 

If the response at ith point on the factor space is 
yi, then at point 1, component X1 = 1 and 
components X2, X3, X4, X5, Xs are all equal to 
zero at X1 = 1 Eqn (3.57a) becomes  

𝑦𝑦1 =∝1 (3.58) 

Substituting X2 = 1 and X1 = X3 = X4 = X5 = 
X6 = 0 Eqn (3.61a) becomes; 

𝑦𝑦2 =∝2 (3.59) 

Similarly, 

𝑦𝑦3 =∝3 (3.60) 

𝑦𝑦4 =∝4 (3.61) 

𝑦𝑦5 =∝5 (3.62) 

𝑦𝑦6 =∝6 (3.63) 

Eqns (3.58) to (3.63) can be expressed in the 
form 

𝑦𝑦𝑖𝑖 =∝𝑖𝑖 (3.64) 

For point 12, that is the mid-point of the 
borderlines connecting points 1 and 2 of the 
factor space, component 𝑋𝑋1 = 1

2
; 𝑋𝑋2 =

1
2

 and 𝑋𝑋3 = 𝑋𝑋4 = 𝑋𝑋5 = 0.  The response at this 
point is 𝑦𝑦12 . 

In Eqn (3.61b), the response, y12 becomes; 

𝑦𝑦12 =
1
2
∝1 +  

1
2
∝2 + � ∝12 .

1
2

  .
1
2
� 

𝑦𝑦12 =
1
2
∝1 +  

1
2
∝2 +  

1
4
∝12 (3.65) 

Similarly 
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𝑦𝑦13 =
1
2
∝1 +  

1
2
∝3 +  

1
4
∝13 (3.66) 

𝑦𝑦14 =
1
2
∝1 +  

1
2
∝4 +  

1
4
∝14 (3.67) 

𝑦𝑦15 =
1
2
∝1 +  

1
2
∝5 +  

1
4
∝15 (3.68) 

𝑦𝑦23 =
1
2
∝2 +  

1
2
∝3 +  

1
4
∝23 (3.69) 

𝑦𝑦24 =
1
2
∝2 +  

1
2
∝4 +  

1
4
∝24 (3.70) 

𝑦𝑦25 =
1
2
∝2 +  

1
2
∝5 +  

1
4
∝25 (3.71) 

𝑦𝑦34 =
1
2
∝3 +  

1
2
∝4 +  

1
4

(3.72) 

𝑦𝑦35 =
1
2
∝3 +  

1
2
∝5 +  

1
4
∝35 (3.73) 

𝑦𝑦45 =
1
2
∝4 +  

1
2
∝5 +  

1
4
∝45 (3.74) 

Eqns (3.69) – (3.74) can be written in the form; 

𝑦𝑦𝑖𝑖𝑖𝑖 =
1
2
∝𝑖𝑖  + 

1
2
∝𝑖𝑖  +  

1
4
∝𝑖𝑖𝑖𝑖 (3.75) 

Rearranging Eqns (3.59) and (3.75), gives 

∝𝑖𝑖=  𝑦𝑦𝑖𝑖(3.76) 

∝𝑖𝑖𝑖𝑖 =  4𝑦𝑦𝑖𝑖𝑖𝑖 − 2 ∝𝑖𝑖− 2 ∝𝑖𝑖 (3.77) 

𝑤𝑤ℎ𝐿𝐿𝑒𝑒𝐿𝐿 ∝𝑖𝑖= 𝑦𝑦𝑖𝑖  𝑎𝑎𝐻𝐻𝑑𝑑 ∝𝑖𝑖= 2𝑖𝑖 (3.78) 

Substituting Eqn (3.74) into Eqn (3.72), yields 

∝𝑖𝑖𝑖𝑖 =  4𝑦𝑦𝑖𝑖𝑖𝑖 − 2𝑦𝑦𝑖𝑖 − 2𝑦𝑦𝑖𝑖(3.79) 

Substituting Eqns (3.77) and (3.79) into Eqn 
(3.52), yields; 

𝑌𝑌 =  𝑦𝑦1 𝑋𝑋1 + 𝑦𝑦2 𝑋𝑋2 + 𝑦𝑦3 𝑋𝑋3 + 𝑦𝑦4 𝑋𝑋4 + 𝑦𝑦5 𝑋𝑋5
+ (4𝑦𝑦12 − 2𝑋𝑋1 −  2𝑋𝑋2) 𝑋𝑋1 𝑋𝑋2
+  (4𝑦𝑦13 − 2𝑋𝑋1 −  2𝑋𝑋3) 𝑋𝑋1 𝑋𝑋3
+  (4𝑦𝑦14 − 2𝑋𝑋1 −  2𝑋𝑋4) 𝑋𝑋1 𝑋𝑋4
+  (4𝑦𝑦15 − 2𝑋𝑋1 −  2𝑋𝑋5)𝑋𝑋1 𝑋𝑋5
+  (4𝑦𝑦23 − 2𝑋𝑋2 −  2𝑋𝑋3) 𝑋𝑋2 𝑋𝑋3
+  (4𝑦𝑦24 − 2𝑋𝑋2 −  2𝑋𝑋4) 𝑋𝑋2 𝑋𝑋4
+  (4𝑦𝑦25 − 2𝑋𝑋2 −  2𝑋𝑋5)𝑋𝑋2 𝑋𝑋5
+  (4𝑦𝑦34 − 2𝑋𝑋3 −  2𝑋𝑋4) 𝑋𝑋3 𝑋𝑋4
+  (4𝑦𝑦35 − 2𝑋𝑋3 −  2𝑋𝑋5)𝑋𝑋3 𝑋𝑋5
+  (4𝑦𝑦45 − 2𝑋𝑋4 −  2𝑋𝑋5)𝑋𝑋4 𝑋𝑋5
+ 𝐿𝐿                              (3. 80) 

Expanding Eqn (3.80) and rearranging gives; 

𝑌𝑌
=  𝑦𝑦1 𝑋𝑋1 − 2𝑦𝑦1𝑋𝑋1 𝑋𝑋2 − 2𝑦𝑦1𝑋𝑋1 𝑋𝑋3 − 2𝑦𝑦1𝑋𝑋1 𝑋𝑋4
− 2𝑦𝑦1𝑋𝑋1 𝑋𝑋5 + 𝑦𝑦2 𝑋𝑋2 − 2𝑦𝑦2𝑋𝑋1 𝑋𝑋2 − 2𝑦𝑦2𝑋𝑋2 𝑋𝑋3
− 2𝑦𝑦2𝑋𝑋2 𝑋𝑋4 − 2𝑦𝑦2𝑋𝑋2 𝑋𝑋5 + 𝑦𝑦3 𝑋𝑋3 − 2𝑦𝑦3𝑋𝑋1 𝑋𝑋3
− 2𝑦𝑦3𝑋𝑋2 𝑋𝑋3 − 2𝑦𝑦3𝑋𝑋3 𝑋𝑋4 − 2𝑦𝑦3𝑋𝑋3 𝑋𝑋5 +  𝑦𝑦4 𝑋𝑋4
− 2𝑦𝑦4 𝑋𝑋1 𝑋𝑋4 −  2𝑦𝑦4 𝑋𝑋2 𝑋𝑋4 − 2𝑦𝑦4 𝑋𝑋3 𝑋𝑋4
− 2𝑦𝑦4 𝑋𝑋4 𝑋𝑋5 +  𝑦𝑦5 𝑋𝑋5 − 2𝑦𝑦5 𝑋𝑋1 𝑋𝑋5 −  2𝑦𝑦5 𝑋𝑋2 𝑋𝑋5
− 2𝑦𝑦5 𝑋𝑋3 𝑋𝑋5 − 2𝑦𝑦5 𝑋𝑋4 𝑋𝑋5 +  4𝑦𝑦12 𝑋𝑋1 𝑋𝑋2
+  4𝑦𝑦13 𝑋𝑋1 𝑋𝑋3 + 4𝑦𝑦14 𝑋𝑋1 𝑋𝑋4 + 4𝑦𝑦15 𝑋𝑋1 𝑋𝑋5
+  4𝑦𝑦23 𝑋𝑋2 𝑋𝑋3 + 4𝑦𝑦24 𝑋𝑋2 𝑋𝑋4 + 4𝑦𝑦25 𝑋𝑋2 𝑋𝑋5
+ 4𝑦𝑦34 𝑋𝑋3 𝑋𝑋4 + 4𝑦𝑦35 𝑋𝑋3 𝑋𝑋5 + 4𝑦𝑦45 𝑋𝑋4 𝑋𝑋5
+ 𝐿𝐿                                                         (3.81) 

Factorizing Eqn (3.81), gives 

𝑌𝑌 =  𝑦𝑦1 𝑋𝑋1(1 −  2𝑋𝑋2 −  2𝑋𝑋3 −  2𝑋𝑋4 −  2𝑋𝑋5)
+ 𝑦𝑦2 𝑋𝑋2(1 −  2𝑋𝑋1 −  2𝑋𝑋3
−  2𝑋𝑋4 −  2𝑋𝑋5)
+  𝑦𝑦3 𝑋𝑋3(1 −  2𝑋𝑋1 −  2𝑋𝑋2
−  2𝑋𝑋4 −  2𝑋𝑋5)
+ 𝑦𝑦4 𝑋𝑋4(1 −  2𝑋𝑋1 −  2𝑋𝑋2
−  2𝑋𝑋3 −  2𝑋𝑋4)
+ 𝑦𝑦5 𝑋𝑋5(1 −  2𝑋𝑋1 −  2𝑋𝑋2
−  2𝑋𝑋3 −  2𝑋𝑋4) +  4𝑦𝑦12 𝑋𝑋1 𝑋𝑋2
+  4𝑦𝑦13 𝑋𝑋1 𝑋𝑋3 + 4𝑦𝑦14 𝑋𝑋1 𝑋𝑋4
+ 4𝑦𝑦15 𝑋𝑋1 𝑋𝑋5 +  4𝑦𝑦23 𝑋𝑋2 𝑋𝑋3
+ 4𝑦𝑦24 𝑋𝑋2 𝑋𝑋4 + 4𝑦𝑦25𝑋𝑋2 𝑋𝑋5
+ 4𝑦𝑦26𝑋𝑋2 𝑋𝑋6 + 4𝑦𝑦34𝑋𝑋3 𝑋𝑋4
+ 4𝑦𝑦35𝑋𝑋3 𝑋𝑋5 + 4𝑦𝑦45𝑋𝑋4 𝑋𝑋5
+ 𝐿𝐿                                 (3.82) 

Recall that in Eqn (3.43); 

𝑋𝑋1+ 𝑋𝑋2 + 𝑋𝑋3 + 𝑋𝑋4 + 𝑋𝑋5 = 1 

Multiplying Eqn (3.43) by 2 gives 
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2𝑋𝑋1+ 2𝑋𝑋2 + 2𝑋𝑋3 + 2𝑋𝑋4 + 2𝑋𝑋5
= 2               (3.83) 

Subtracting 1 from both sides of Eqn (3.83), 
gives 

2𝑋𝑋1+ 2𝑋𝑋2 + 2𝑋𝑋3 + 2𝑋𝑋4 + 2𝑋𝑋5 − 1
= 1     (3.84) 

Eqn (3.84) can be expressed as:     

2𝑋𝑋1 − 1 = 1 − 2𝑋𝑋2 − 2𝑋𝑋3 − 2𝑋𝑋4 − 2𝑋𝑋5(3.85) 

Similarly, 

2𝑋𝑋2 − 1 = 1 − 2𝑋𝑋1 − 2𝑋𝑋3 − 2𝑋𝑋4 − 2𝑋𝑋5(3.86) 

2𝑋𝑋3 − 1 = 1 − 2𝑋𝑋1 − 2𝑋𝑋2 − 2𝑋𝑋4 − 2𝑋𝑋5(3.87) 

2𝑋𝑋4 − 1 = 1 − 2𝑋𝑋1 − 2𝑋𝑋3 − 2𝑋𝑋4 − 2𝑋𝑋5(3.88) 

2𝑋𝑋5 − 1 = 1 − 2𝑋𝑋1 − 2𝑋𝑋2 − 2𝑋𝑋3 − 2𝑋𝑋4(3.89) 

Substituting Eqns (3.83) to (3.89) into Eqn 
(3.81), yield 

𝑌𝑌 = 𝑋𝑋1(2𝑋𝑋1 − 1)𝑦𝑦1 + 𝑋𝑋2(2𝑋𝑋2 − 1)𝑦𝑦2
+ 𝑋𝑋3(2𝑋𝑋3 − 1)𝑦𝑦3
+ 𝑋𝑋4(2𝑋𝑋4 − 1)𝑦𝑦4
+ 𝑋𝑋5(2𝑋𝑋5 − 1)𝑦𝑦5 + 4𝑦𝑦12 𝑋𝑋1 𝑋𝑋2
+  4𝑦𝑦13 𝑋𝑋1 𝑋𝑋3 + 4𝑦𝑦14 𝑋𝑋1 𝑋𝑋4
+ 4𝑦𝑦15 𝑋𝑋1 𝑋𝑋5 +  4𝑦𝑦23 𝑋𝑋2 𝑋𝑋3
+ 4𝑦𝑦24 𝑋𝑋2 𝑋𝑋4 + 4𝑦𝑦25𝑋𝑋2 𝑋𝑋5
+ 4𝑦𝑦26𝑋𝑋2 𝑋𝑋6 + 4𝑦𝑦34𝑋𝑋3 𝑋𝑋4
+ 4𝑦𝑦35𝑋𝑋3 𝑋𝑋5 + 4𝑦𝑦45𝑋𝑋4 𝑋𝑋5
+ 𝐿𝐿                            (3.90) 

Eqn (3.90) is the mixture design mode for the 
optimization of a concrete mixture consisting of 
five components. The term, 𝑦𝑦𝑖𝑖  and 𝑦𝑦𝑖𝑖𝑖𝑖  responses 
(representing compressive strength) at the point 
iand ij. These responses are determined by 
carrying out laboratory tests. 

Control Points 

Another set of fifiteen mix proportions are 
required to confirm the adequacy of the model 
of Eqn (3.90). The set of mixture proportions are 
called control mixture proportions. Therefore, 
twenty-one control points will be used. They are 
C1, C2, C3, C4, C5, C12, C13, C14, C15, C23, C24, 
C25, C34, C35, and C45,  

The mass constituent of the ingredients of 
concrete for both trial and control mixes are as 
shown in Tables 3.5 and 3.6 respectively. 

Table3.6: Mass of Constituents of Concrete of Control Mixes (kg) 

C Water Cement SCBA Sand Granite 
1 1.95 3.435 0.375 9.405 13.485 
2 1.905 3.3 0.585 8.895 13.98 
3 1.86 3.18 0.6375 8.4 14.49 
4 1.905 3.345 0.477 9.36 13.56 
5 1.845 3.195 0.6225 8.835 14.13 
12 1.86 3.24 0.573 8.97 10.125 
13 1.89 3.3 0.525 9.165 13.74 
14 1.785 3.15 0.669 9.54 13.365 
15 1.95 3.405 0.42 9.00 13.905 
23 1.935 3.36 0.465 8.865 14.055 
24 1.92 3.3 0.495 8.7 14.205 
25 1.8 3.285 0.54 8.55 12.885 
34 1.92 3.27 0.54 8.325 14.58 
35 1.92 3.27 0.555 8.28 14.625 

IJSER

http://www.ijser.org/


International Journal of Scientific & Engineering Research, Volume 8, Issue 1, January-2017                                                            152 
ISSN 2229-5518 

IJSER © 2017 
http://www.ijser.org 

45 1.965 3.405 0.42 9.045 14.085 
 

4.0 Compressive Test on Sugar Cane Bagasse 
ash – Cement Concrete 

This test was conducted on concrete cubes to 
determine compressive strength of each replicate 
cube after 28days of curing (28thdays strength). 
The compressive strength of each replicate cube 

was calculated using equation 4.1and the mean 
compressive strength was calculated using 
equation 4.2, the equations are stated below 

Compressive Strength =    
𝐹𝐹𝑜𝑜𝑒𝑒𝑐𝑐𝐿𝐿  𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑖𝑖𝐿𝐿𝑑𝑑  𝑎𝑎𝑡𝑡  𝑒𝑒𝑢𝑢𝑎𝑎𝑡𝑡𝑢𝑢𝑒𝑒𝐿𝐿  

𝐴𝐴𝑒𝑒𝐿𝐿𝑎𝑎  𝑜𝑜𝐻𝐻  𝑤𝑤ℎ𝑖𝑖𝑐𝑐ℎ  𝑡𝑡ℎ𝐿𝐿  𝑓𝑓𝑜𝑜𝑒𝑒𝑐𝑐𝐿𝐿  𝑖𝑖𝑠𝑠  𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑖𝑖𝐿𝐿𝑑𝑑
      =     𝐹𝐹

𝐴𝐴
       4.1 

 
𝑀𝑀𝐿𝐿𝑎𝑎𝐻𝐻𝑐𝑐𝑜𝑜𝑚𝑚𝑎𝑎𝑒𝑒𝐿𝐿𝑠𝑠𝑠𝑠𝑖𝑖𝑠𝑠𝐿𝐿𝑠𝑠𝑡𝑡𝑒𝑒𝐿𝐿𝐻𝐻𝑠𝑠𝑡𝑡ℎ

=
𝑐𝑐𝑜𝑜𝑚𝑚𝑎𝑎𝑒𝑒𝐿𝐿𝑠𝑠𝑠𝑠𝑖𝑖𝑠𝑠𝐿𝐿𝑠𝑠𝑡𝑡𝑒𝑒𝐿𝐿𝐻𝐻𝑠𝑠𝑡𝑡ℎ𝑜𝑜𝑓𝑓𝑒𝑒𝐿𝐿𝑎𝑎𝑎𝑎𝑖𝑖𝑐𝑐𝑎𝑎𝑡𝑡𝐿𝐿1 + 𝑐𝑐𝑜𝑜𝑚𝑚𝑎𝑎𝑒𝑒𝐿𝐿𝑠𝑠𝑠𝑠𝑖𝑖𝑠𝑠𝐿𝐿𝑠𝑠𝑡𝑡𝑒𝑒𝐿𝐿𝐻𝐻𝑠𝑠𝑡𝑡ℎ𝑜𝑜𝑓𝑓𝑒𝑒𝐿𝐿𝑎𝑎𝑎𝑎𝑖𝑖𝑐𝑐𝑎𝑎𝑡𝑡𝐿𝐿2 + 𝑐𝑐𝑜𝑜𝑚𝑚𝑎𝑎𝑒𝑒𝐿𝐿𝑠𝑠𝑠𝑠𝑖𝑖𝑠𝑠𝐿𝐿𝑠𝑠𝑡𝑡𝑒𝑒𝐿𝐿𝐻𝐻𝑠𝑠𝑡𝑡ℎ𝑜𝑜𝑓𝑓𝑒𝑒𝐿𝐿𝑎𝑎𝑎𝑎𝑖𝑖𝑐𝑐𝑎𝑎𝑡𝑡𝐿𝐿3

3       (4.2) 

The “F” value is read from the compressive machine when cube crushed A = 150 x 150mm2(since cube 
used for the work is a 150 x 150 x150 cube). The 28thday compressive strength of each mix is presented 
in the table4.1 

Table 4.1 Compressive Strength Test Results of 28th Day of Concrete Cube 

S/No Point of 
observation 

Replicate 1 
(N/mm2) 

Replicate 2 
(N/mm2) 

Replicate 3 
(N/mm2) 

Mean Compressive 
Strength 
(N/mm2) 
 

1 1 23.22 20.93 21.51 21.89 
2 2 28.71 29.16 30.58 29.48 
3 3 22.24 23.16 23.22 21.54 
4 4 15.44 16.13 15.13 15.57 
5 5 15.56 14.49 15.47 15.17 
6 12 24.09 24.60 25.87 24.85 
7 13 21.36 19.40 21.93 20.90 
8 14 20.47 16.02 17.71 18.07 
9 15 21.80 25.44 25.89 24.38 
10 23 26.33 23.89 22.78 24.33 
11 24 13.89 13.80 13.00 13.56 
12 25 13.84 15.22 13.40 14.15 
13 34 15.22 20.20 15.31 16.91 
14 35 21.18 17.36 21.18 18.91 
15 45 16.82 13.44 13.80 14.69 
16 C1 22.95 23.59 21.80 22.78 
17 C2 18.31 18.05 18.33 18.23 
18 C3 18.79 19.29 19.67 19.25 
19 C4 19.40 18.78 17.77 18.65 
20 C5 19.04 19.67 19.25 19.32 
21 C6 18.96 16.38 17.28 17.54 
22 C7 20.35 22.16 20.55 21.02 
23 C8 13.44 15.47 13.72 14.21 
24 C9 18.70 20.85 18.20 19.25 
25 C10 22.45 22.08 21.53 22.02 
26 C11 20.18 19.67 20.18 20.01 
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27 C12 20.33 19.50 20.80 20.21 
28 C13 21.33 20.10 22.20 21.21 
29 C14 21.50 20.32 21.27 21.03 
30 C15 18.58 17.88 18.95 18.47 
 

 

 

 

 

 

 

 

Table 4.4 Comparison of the Compressive Strength Obtained fromthe Model and the Experiment 

Points Experimental Computed 
Compressive 

A B 

of Compressive 
Strength 

Strength  (%) 

observation (N/mm2) (N/mm2)   
  Scheffe’s Model  
1 21.89 21.89 0 0 
2 29.48 29.48 0 0 
3 21.54 21.54 0 0 
4 15.57 15.57 0 0 
5 15.17 15.17 0 0 
12 24.85 24.85 0 0 
13 20.9 20.9 0 0 
14 18.07 18.07 0 0 
15 24.38 24.38 0 0 
23 24.33 24.33 0 0 
24 13.56 13.56 0 0 
25 14.15 14.15 0 0 
34 16.91 16.91 0 0 
35 18.91 18.91 0 0 
45 14.69 14.69 0 0 
C1 22.78 22.98 -0.2 -0.87413 
     
C2 18.23 18.224 0.01 0.05487 
     
C3 19.25 19.491 -0.24 -1.23903 
     
C4 18.65 18.595 0.05 0.268456 
     
C5 19.32 19.194 0.13 0.675149 
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C6 17.54 17.161 0.38 2.190202 
     
C7 21.02 20.87 0.15 0.716161 
     
C8 14.21 14.418 -0.21 -1.46699 
     
C9 19.25 19.488 -0.24 -1.23903 
     
C10 22.02 21.93 0.09 0.409556 
     
C11 20.01 19.342 0.67 3.405337 
     
C12 20.21 20.329 -0.12 -0.59201 
     
C13 21.21 20.823 0.39 1.855817 
     
C14 21.03 21.245 -0.22 -1.04068 
     
C15 18.47 18.467 0.03 0.01 
A= Difference between results obtained from 
Experimental investigation and Scheffe’s Model 

B= Percentage difference between results 
obtained from Experimental investigation and 
Scheffe’s Model 

Percentage Difference

=
Difference of x and y    

Average of x and y
 𝑥𝑥 100%           (4.3) 

Determination of Compressive Strength from 
Scheffe’s Simplex Model 

The Scheffe’s Simplex Model used in writing 
the computer program is obtained by 
substituting the values of the compressive 
strength results (Yi)from table 4.6 into Scheffe’s 
model given in equation (3.81) 

Substituting these values gives Equation 4.5 

Y = 21.89X1(2X1-1) + 29.48X2(2X2-1) + 
21.54X3(2X3-1) + 15.57X4 (2X4-1) + 
15.17X5(2X5-1) + 99.4X1X2 + 83.6X1X3 + 
72.28X1X4 + 97.52X1X5 + 97.32X2X3 + 
54.24X2X4 + 56.6X2X5 + 67.64X3X4 + 
75.64X3X5 + 58.76X4X5             (4.4) 

Equation 4.5 is the Scheffe’s Simplex Design 
model for the optimization of the compressive 
strength of Sugar Cane Bagasse ash Cement 
Concrete 

Test of Adequacy of Scheffe’s Model 

T- Statistic tests will be used to testing the 
adequacy of Scheffe’s model developed, it is 
expected that the results of the model will be 
about 95% accurate 

Table 4.5 T – statistical test computation for Scheffe’s Simplex Model 

SN YE YM Di =YM-YE DA – Di (DA - Di)2 
C1 22.78 22.98 -0.2 -0.212 0.0449 
C2 18.23 18.22 0.01 -0.422 0.1781 
C3 19.25 19.49 -0.24 -0.172 0.0296 
C4 18.65 18.6 0.05 -0.462 0.2134 
C5 19.32 19.2 0.12 -0.532 0.283 
C6 17.54 23.24 -5.7 5.288 27.9629 
C7 21.02 14.79 6.23 -6.642 44.1162 
C8 14.21 15.42 -1.21 0.798 0.6368 
C9 19.25 19.45 -0.2 -0.212 0.0449 
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C10 22.02 18.04 3.98 -4.392 19.2897 
C11 20.01 23.24 -3.23 2.818 7.9411 
C12 20.21 20.33 -0.12 -0.292 0.0853 
C13 21.21 21.8 -0.59 0.178 0.0317 
C14 21.03 21.25 -0.22 -0.192 0.0369 
C15 18.47 23.33 -4.86 4.448 19.7847 
  S Di                = -6.18 S (DA - Di)2  = 120.6792 
  DA = S Di / N = -0.412 S2 = S (DA Di)2/(N-1) = 8.6199 
    S = Ö S2  = 2.936 
    T     =     DA*(N)^0.5/S = -0.5435 
TCALCULATED =0.5435 

5 % Significance for Two-Tailed Test = 2.5 %
 1 - 2.5% = 0.975  

The value of Allowable Total Variation In T- 
Test is obtained from standard T – statistic table 
Allowable Total Variation In T- Test = T (0.975, N-

1)   = T (0.975, 14)   = 2.14  

The value of Tcalculated(0.5435) is below the 
allowable total variation (2.14), the null 
hypothesis that “there is no significant 
difference between the experimental and the 
model expected results” is accepted. This 
implies that Scheffe Simplex Model is adequate 

5.0 Conclusion 

From this research work it can be concluded 
that; 

i. The result of the compressive 
strength test showed that the 
strength of the Sugar cane Bagasse 
ash cement- concrete was highest at 
10% replacement of Cement with 
Sugar Cane Bagasse Ash. The result 
of these tests shows the feasibility of 
using SCBA as partial replacement 
for cement. It also makes the colour 
of the concrete to be darker than 
ordinary conventional concrete.  

ii. A mathematical model was 
developed using Scheffe’s Simplex 
Model which was used to predict the 
compressive strength give a mix 
ratio and a mix ratio given a 
compressive strength.  

iii. The student t-test and the fisher- 
statistical test were used to check 
the adequacy of the model and 

model was found to be adequate at 
95% confidence level.  
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